Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Образовательный центр г. Когалым

УТВЕРЖДАЮ

Проректор

по образовательной деятельности

А.Б. Петроченков

"29" июня 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина Химия, специальные главы

Форма обучения Очная

Уровень высшего образования Специалист

Общая трудоемкость (час., (ЗЕТ)) 108 (3)

Специальность 21.05.02 Прикладная геология

1. Общие положения

1.1. Цели и задачи дисциплины

Целью дисциплины является изучение теоретических основ поверхностных явлений и дисперсных систем и практики их применения в промышленных процессах, а также формирование у студентов умений и навыков решения практических задач из области прикладной коллоидной химии.

1.2. Изучаемые объекты дисциплины

Предметом освоения дисциплины являются следующие объекты:

- теоретические основы коллоидной химии;
- поверхностные явления;
- дисперсные системы.

1.3. Входные требования

Освоение дисциплины «Химия, специальные главы» строится на базе материала, изложенного в дисциплинах "Химия" или "Неорганическая химия".

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс	Планируемые результаты	Индикатор	Средства
	индикатора	обучения по дисциплине	достижения	оценки
		(знать, уметь, владеть)	компетенции, с	
			которым соотнесены	
			планируемые	
			результаты обучения	
ОПК-3	ИД-1ОПК-	Знает основные	Знает положения	Зачет
	3	положения и научные	фундаментальных	
		теории коллоидной химии	естественных наук и	
			научных теорий при	
			проведении научно-	
			исследовательских	
			работ по изучению и	
			воспроизводству	
			минерально-сырьевой	
			базы	
ОПК-3	ИД-2ОПК-	Умеет использовать	Умеет использовать	Зачет
	3	основные положения	основные положения	
		коллоидной химии при	естественнонаучных и	
		проведении научно-	общеинженерных	

		исследовательских работ	дисциплин при	
		по изучению и	проведении научно-	
		воспроизводству	исследовательских	
		минерально-сырьевой	работ по изучению и	
		базы	воспроизводству	
			минерально-сырьевой	
			базы	
ОПК-3	ИД-3ОПК-	Владеет навыками	Владеет навыками Зач	ет
	3	решения задач коллоидной	решения задач и	
		химии при проведении	моделирования	
		научно-исследовательских	эксперимента при	
		работ по изучению и	проведении научно-	
		воспроизводству	исследовательских	
		минерально-сырьевой	работ по изучению и	
		базы	воспроизводству	
			минерально-сырьевой	
			базы	

3. Объем и виды учебной работы

		Распре
		делени
		е по
		семест
Вид учебной работы	Всего	рам в
вид учестой рассты	часов	часах
		Номер
		семест
		pa
		5
1. Проведение учебных занятий (включая проведение		
текущего контроля успеваемости) в форме:	45	45
1.1. Контактная аудиторная работа, из них:		
- лекции (Л)	16	16
- лабораторные работы (ЛР)		
- практические занятия, семинары и (или) другие виды занятий	27	27
семинарского типа (ПЗ)	21	27
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	63	63
2. Промежуточная аттестация		
Экзамен		
Дифференцированный зачет		
Зачет	9	9
Курсовой проект (КП)		

Курсовая работа (КР)		
Общая трудоемкость дисциплины	108	108

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		м аудито ий по ви часах ЛР	-	Объем внеаудиторных занятий по видам в часах СРС
5й семо		711	113	Cre
	T T		1	
Термодинамика поверхностных явлений и				
процессов Задачи курса. Термодинамика поверхностных				
явлений и процессов. Метод избытков	4	0	5	17
Гиббса.	4	U	3	1 /
Капиллярные силы. Жидкость на твёрдой				
поверхности, смачиваемость.				
Дисперсные системы				
Эмульсии. Образование и устойчивость				
эмульсий.				
Эмульгаторы и деэмульгаторы. Эмульсии и				
процессы				
эмульгирования в промышленности. Дисперсии газа				
в жидкости и жидкости в газе. Пены.				
Пенообразование, пеногасители и				
стабилизаторы				
пены. Аэрозоли. Дисперсии твердого тела в				
жидкости. Суспензии и золи. Прикладная				
реология,	10	0	20	40
тиксотропия. Сыпучие тела и пористые				
среды.				
Методы измерения морфологических				
характеристики				
твёрдых тел (удельная поверхность и				
пористость).				
Порошки в промышленности. Пористые тела				
В				
промышленности (адсорбенты,				
теплоизоляционные				
материалы).				
Механическое поведение дисперсных систем				
Теоретические и прикладные аспекты	2	0	2	6
реологии				

Итого за 5й семестр	16	0	27	63
Итого по дисциплине	16	0	27	63

Примерная тематика практических занятий

Nº	Наименование темы практического (семинарского) занятия
п.п.	паименование темы практического (семинарского) занятия
1	Термодинамика поверхностных явлений
2	Смачивание. Адсорбция на границе жидкость-жидкость
3	Адсорбция твёрдыми телами
4	Поверхностно-активные вещества. Мицеллы
5	Образование и устойчивость эмульсий
6	Пены. Пенообразование
7	Аэрозоли
8	Суспензии и золи
9	Сыпучие тела: форма микрочастиц, гранулометрический состав
10	Сыпучие тела: характеристики плотности и пористости
11	Определение удельной поверхности твёрдых тел методом БЭТ
12	Доклад по заданной теме

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1.Изучение учебной дисциплины должно вестись систематически.
- 2.После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3.Особое внимание следует уделить выполнению отчетов по практическим занятиям, индивидуальным комплексным заданиям на самостоятельную работу.
- 4.Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.
- 6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература Не используется

6.2. Электронная учебно-методическая литература

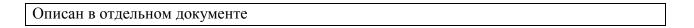
Вид литературы	Наименование	Ссылка на	Доступность (сеть
	разработки	информационны	Интернет /
		й ресурс	локальная сеть;
			авторизованный /
			авторизованный
			доступ)
Основная	Гельфман М. И.	http://elib.pstu.ru/	сеть Интернет;
литература	Коллоидная химия :	vufind/Record/lan	авторизованный
	учебник для вузов /	RU-LAN-BOOK-	доступ
	Гельфман М. И.,	145851	
	Ковалевич О. В.,		
	Юстратов В. П		
	Санкт-Петербург:		
	Лань, 2020.		
Дополнительная	Назаров В. В.	http://elib.pstu.ru/	сеть Интернет;
литература	Коллоидная химия.	vufind/Record/lan	авторизованный
	Практикум и задачник	RU-LAN-BOOK-	доступ
	: учебное пособие /	111886	
	Назаров В. В.,		
	Гродский А. С.,		
	Шабанова Н. А.,		
	Гаврилова Н. Н.,		

	Белова И. А., Жилина		
	О. В., Киенская К. И.,		
	Кривощепов А. Ф		
	Санкт-Петербург:		
	Лань, 2019.		
Учебно-	Нигматуллин Н. Г.,	https://elib.pstu.ru	сеть Интернет;
методическое	Ганиева Е. С.	/Record/RULAN	авторизованный
обеспечение	Физическая и	RU-LAN-BOOK-	доступ
самостоятельной	коллоидная химия.	302459	
работы	Сборник заданий для		
студентов	самостоятельной		
	работы студентов :		
	учебное пособие для		
	вузов. Санкт-		
	Петербург : Лань,		
	2023. 76 c.		

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Опорационни за опотами	Windows 10 (подп. Azure Dev Tools for
Операционные системы	Teaching)
Офизичествення	Adobe Acrobat Reader DC. бесплатное ПО
Офисные приложения.	просмотра PDF
Офизичествення	Microsoft Office Professional 2007. лиц.
Офисные приложения.	42661567

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине


Наименование	Ссылка на информационный ресурс
База данных научной электронной	https://elibrary.ru/
библиотеки (eLIBRARY.RU)	https://chorary.ru/
Научная библиотека Пермского	
национального исследовательского	http://lib.pstu.ru/
политехнического университета	
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система	http://www.iprbookshop.ru/
IPRbooks	http://www.iproookshop.ru/
Информационные ресурсы Сети	http://www.consultant.ru/
КонсультантПлюс	http://www.consultant.ru/
Информационно-справочная система	https://техэксперт.сайт/

нормативно-технической документации
"Техэксперт: нормы, правила, стандарты и
законодательства России"

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических		
	средств обучения		
Лекция	Столы, стулья, стационарный презентационный комплекс		
Практическое	Столы, стулья, стационарный презентационный комплекс		
занятие	Столы, стулья, стационарный презентационный комплекс		

8. Фонд оценочных средств дисциплины

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Образовательный центр г.Когалым

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине "Химия, специальные главы"

Специалитет

Форма обучения Очная

Общая трудоемкость (час., (ЗЕТ)) 108 (3)

Специальность 21.05.02 Прикладная геология

Курс: 3 Семестр: 5

Зачет: 5 семестр

Уровень высшего образования

Фонд оценочных средств (ФОС) для проведения промежуточной аттестации обучающихся по дисциплине "Химия, специальные главы" является частью (приложением) к рабочей программе дисциплины (РПД). ФОС для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. ФОС для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины "Химия, специальные главы" запланировано в течение одного семестра.

Предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине.

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала и в ходе практических занятий, а также на зачете (табл. 1.1)

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по		Вид контроля				
дисциплине (ЗУВы)	Текущий		Рубежный		Итоговый	
	С	ТО	ОПР	T	Экзамен	
Усвоенные знания						
3.1. Знает основные положения и научные теории коллоидной химии	С	ТО	ОПР	Т	ТВ	
Освоенные умения						
У.1. Умеет использовать основные положения коллоидной химии при проведении научно-исследовательских работ по изучению и воспроизводству минерально-сырьевой базы	С	ТО	ОПР	Т	ПЗ	
Приобретенные владения						
В.1. Владеет навыками решения задач коллоидной химии при проведении научно-исследовательских работ по изучению и воспроизводству минерально-сырьевой базы	С	ТО	ОПР	Т	КЗ	

С - собеседование по теме; ТО - коллоквиум (теоретический опрос); КЗ - кейс-задача (индивидуальное задание); ОЛР - отчет по лабораторной работе; ОПР - отчет по практической работе; Т/КР - рубежное тестирование (контрольная работа); ТВ - теоретический вопрос; ПЗ - практическое задание; КЗ - комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме зачета, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучающихся, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с "Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования - программам бакалавриата, специалитета и магистратуры в ПНИПУ" предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль с целью контроля исходного уровня подготовленности обучающегося и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента "знать" заданных компетенций) на каждом аудиторном занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучающимися отдельных компонентов "знать" и "уметь" заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), рефератов, эссе и т.д.
- рубежный контроль по дисциплине, проводимый на следующей неделе после прохождения каждого теоретического раздела дисциплины, и промежуточный, осуществляемый во время каждого контрольного мероприятия внутри тематического раздела дисциплины;
- межсессионная аттестация с целью единовременного подведения итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме.

Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме тестирования или проверки рубежных контрольных работ после изучения каждого тематического модуля учебной дисциплины.

2.2.1 Защита отчетов по практическим занятиям

Всего запланировано 12 практических занятий. Типовые темы практических занятий приведены в РПД.

2.2.2. Рубежное тестирование

Запланировано 3 рубежных тестирования (РТ), проводимых в форме проверки рабочих тетрадей, после освоения студентами тем дисциплины. Первое РТ — по теме 1 «Термодинамика поверхностных явлений и процессов», второе РТ — по теме 2 «Дисперсные системы», третье РТ — по теме 3 «Твердофазные гетерогенные системы».

Типовые задания первого РТ:

- 1. Какое количество микрокапель можно получить из одной капли жидкости объёмом 100 мкл, если диаметр микрокапель составляет 1 мкм?
- 2. Рассчитать свободную поверхностную энергию 5 г водного тумана, если известно, что капли тумана имеют средний радиус 2 мкм. Удельная поверхностная энергия воды 72.7 мДж/м^2 , плотность воды 0.998 г/см^3 .

Типовые задания второго РТ:

- 1. ККМ олеата калия ($C_{18}H_{33}O_2K$) при $25^{\circ}C$ составляет 0.0012 моль/л. Допуская, что среднее число агрегации равно 80, рассчитать массу олеата, необходимую для создания концентрации мицелл 0.0001 моль/л в объёме 1 л.
- 2. Для приготовления крема, который представляет собой эмульсию типа вода в масле с содержанием дисперсной фазы 30% и размером капель 3 мкм используют эмульгатор с молярной массой 350 г/моль и молекулярными размерами $0.4~\text{нм} \times 0.7~\text{нм}$. Рассчитать концентрацию эмульгатора в дисперсной среде в г/л, если известно, что для стабилизации капель необходимо их полное покрытие мономолекулярным слоем эмульгатора.

Типовые задания третьего РТ:

1. В таблице приведены результаты гранулометрических измерений образца грунта. Построить гистограмму фракционного состава, интегральную кривую гранулометрического состава, рассчитать коэффициент неоднородности грунта.

Фракция,	Macca,	Доля фракции,	Накопленная доля,
MM	Γ	%	%
0.0 - 0.1	277.6		
0.1 - 0.25	116.0		
0.25 - 0.5	132.3		
0.5 - 1.0	197.2		
1.0 - 2.0	354.4		
2.0 - 3.0	334.2		
Сумма			

2. Для быстрой оценки удельного объёма пор адсорбента ($V_{yд}$) использовали водяной метод. Навеску высушенного адсорбента 10.0000 г пропитали водой до полного насыщения и взвесили снова. Масса насыщенного водой адсорбента составила 10.9670 г. Определить $V_{yд}$, принимая плотность воды равной 0.9982 г/см³.

Типовые шкалы и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль по дисциплине)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются положительная интегральная оценка по результатам текущего и рубежного контроля, а также успешная защита отчетов по всем практическим занятиям.

Промежуточная аттестация в форме зачета по дисциплине проводится по билетам. Билет содержит теоретический вопрос для проверки усвоенных знаний, практическое задание для проверки освоенных умений и комплексное задание для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали теоретические вопросы и практические задания, контролирующие уровень сформированности всех заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые задания для промежуточной аттестации по дисциплине

Типовые теоретические вопросы для проверки знаний на зачете:

- Разъяснить термин «адгезия»: суть явления и способы количественной оценки;
- Что такое кратность пены;
- Рассказать о номенклатуре пор ИЮПАК.

Типовые практические задания для проверки умений на зачете:

- На какую высоту поднимется вода ($\sigma = 0.0727 \text{ H/m}$, $\rho = 998 \text{ кг/м}^3$) в капилляре радиусом 0.4 мм?
- Длина молекулы ПАВ составляет 1 нм, ширина гидрофильного фрагмента 0.4 нм. Оцените максимальное число молекул, образующих мицеллу Гартли.
- В разбавленный раствор $Al(NO_3)_3$ медленно вводят раствор NaOH, в результате чего образуется гидрозоль $Al(OH)_3$.
- 1. Укажите знак заряда коллоидной частицы.
- 2. Какое из следующих соединений будет наиболее эффективным коагулянтом золя: NaCl, CaCl₂, Na₃PO₄, K_2 SO₄?

Типовые комплексные задания для проверки владений на зачете:

- Изделие содержит на поверхности 10 мг жировых загрязнений со средней молярной массой 600 г/моль и подвергается очистке в чане объёмом 10 л с использованием ПАВ с ККМ 0.0005 моль/л. Допуская, что очистка осуществляется по механизму солюбилизации, среднее число агрегации равно 100 и в 1 мицелле растворяется 5 молекул загрязнителя, рассчитать массу ПАВ, необходимую для очистки одного изделия. Молярная масса ПАВ 350 г/моль
- По приведённому рисунку рассчитать краевой угол смачивания.
- Используя приведённые в таблице данные по зависимости вязкости (η) разбавленного гидрозоля золота от его объёмной доли (φ), установите математическую форму зависимости η от φ. Вязкость чистой воды при 25°C 0.0009 Па·с.

φ	0.001	0.005	0.01	0.02
η, мПа·с	0.902	0.913	0.921	0.949

Перечень типовых ситуационных заданий и кейсов для проверки умений и владений представлен в приложении 1.

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме оценки уровня сформированности компонентов "знать", "уметь" и "владеть" заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля в процессе промежуточной аттестации.

Типовые шкала и критерии оценки результатов обучения в процессе промежуточной аттестации для компонентов "знать", "уметь" и "владеть" приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1 Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций путем выборочного контроля в процессе промежуточной аттестации считается, что полученная оценка за компонент проверяемой компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Правильный ответ	Содержание вопроса	Компетен ция
состояние системы, при котором скорости прямого и обратного процесса равны (или состояние реакции, при котором скорости прямой реакции и обратной реакции равны, или не изменяющееся во времени (P, V, T = const) состояние системы, содержащей вещества, способные к взаимодействию)	Химическое равновесие – это	ОПК-3
Температура, давление, концентрация веществ	Перечислите факторы, влияющие на смещение химического равновесия	ОПК-3
Давление следует увеличить, температуру следует уменьшить	Как нужно изменить давление и температуру, чтобы сместить равновесие реакции $N_2(\Gamma)$ + $3H_2(\Gamma)$ = $2NH_3(\Gamma) \Delta H < 0$ в сторону продуктов?	ОПК-3
2	Равновесие реакции $N_2(\Gamma)$ + $3H_2(\Gamma)$ $\leftrightarrow 2NH_3(\Gamma)$ устанавливается при следующих концентрациях (моль/дм³): $[N_2] = 0.01$; $[H_2] = 2.0$; $[NH_3] = 0.4$. Вычислите константу равновесия.	ОПК-3
состояние системы, при котором скорости прямого и обратного процесса равны (или состояние реакции, при котором скорости прямой реакции и обратной реакции равны, или не изменяющееся во времени (P, V, T = const) состояние системы, содержащей вещества, способные к взаимодействию)	Составные части раствора	ОПК-3